Jump to content

Dopamine reuptake inhibitor

From Wikipedia, the free encyclopedia
(Redirected from Dopamine uptake inhibitors)
Dopamine reuptake inhibitor
Drug class
Class identifiers
UseMajor depressive disorder, attention-deficit hyperactivity disorder, narcolepsy
Biological targetDopamine transporter
Legal status
In Wikidata

A dopamine reuptake inhibitor (DRI) is a class of drug which acts as a reuptake inhibitor of the monoamine neurotransmitter dopamine by blocking the action of the dopamine transporter (DAT). Reuptake inhibition is achieved when extracellular dopamine not absorbed by the postsynaptic neuron is blocked from re-entering the presynaptic neuron. This results in increased extracellular concentrations of dopamine and increase in dopaminergic neurotransmission.[1]

DRIs are used in the treatment of attention-deficit hyperactivity disorder (ADHD) and narcolepsy for their psychostimulant effects, and in the treatment of obesity and binge eating disorder for their appetite suppressant effects. They are sometimes used as antidepressants in the treatment of mood disorders, but their use as antidepressants is limited given that strong DRIs have a high abuse potential and legal restrictions on their use. Lack of dopamine reuptake and the increase in extracellular levels of dopamine have been linked to increased susceptibility to addictive behavior given increase in dopaminergic neurotransmission.[citation needed] The dopaminergic pathways are considered to be strong reward centers.[citation not found] Many DRIs such as cocaine are drugs of abuse due to the rewarding effects evoked by elevated synaptic concentrations of dopamine in the brain.

Medical uses

[edit]

The following drugs have DRI action and have been or are used clinically specifically for this property: amineptine, dexmethylphenidate, difemetorex, fencamfamine, lefetamine, levophacetoperane, medifoxamine, mesocarb, methylphenidate, nomifensine, pipradrol, prolintane, and pyrovalerone.

The following drugs are or have been used clinically and possess only weak DRI action, which may or may not be clinically-relevant: adrafinil, armodafinil, bupropion, mazindol, modafinil, nefazodone, sertraline, and sibutramine.

The following drugs are or have been clinically used but only coincidentally have DRI properties: benzatropine, diphenylpyraline, etybenzatropine, ketamine, nefopam, pethidine (meperidine), and tripelennamine.

The following are a selection of some particularly notably abused DRIs: cocaine, ketamine, MDPV, naphyrone, and phencyclidine (PCP). Amphetamines, including amphetamine, methamphetamine, MDMA, cathinone, methcathinone, mephedrone, and methylone, are all DRIs as well, but are distinct in that they also behave, potentially more potently, as dopamine releasing agents (DRAs) (due to Yerkes–Dodson's law, 'more potently stimulated' may not equal more optimally functionally stimulated). There are very distinct differences in the mode of action between dopamine releasers/substrates & dopamine re-uptake inhibitors; the former are functionally entropy-driven (i.e., relating to hydrophobicity) and the latter are enthalpy-driven (i.e., relating conformational change).[2][3] Reuptake inhibitors such as cocaine induce hyperpolarization of cloned human DAT upon oocytes that are naturally found on neurons, whereas releasing agents induce de-polarization of the neuron membrane.[dubiousdiscuss][4][5]

The wakefulness-promoting agent modafinil and its analogues (e.g., adrafinil, armodafinil) have been approved to treat narcolepsy and shift work sleep disorder.[6] These act as weak (micromolar) DRIs,[7] but this effect does not correlate with wakefulness-promoting effects, suggesting the effect is too weak to be of clinical significance.[citation needed] The conclusion is that these drugs promote wakefulness via some other mechanism.[8][disputeddiscuss]

DRIs have been explored as potential antiaddictive agents in the context of replacement therapy strategies, analogous to nicotine replacement for treating tobacco addiction and methadone replacement in the case of opioid addiction. DRIs have been explored as treatment for cocaine addiction, and have shown to alleviate cravings and self-administration.[9]

Monoamine reuptake inhibitors, including DRIs, have proven quite effective in managing excessive food consumption and regulating appetite in obese patients. Though such pharmacotherapy is still available, the majority of stimulant anorectics marketed for this purpose have been withdrawn or discontinued due to adverse side effects such as hypertension, valvulopathy, and drug dependence.[10]

Pharmacology

[edit]

DRIs may be divisible into two different types with different effects: (1) typical or conventional DRIs like cocaine, WIN-35428 (β-CFT), and methylphenidate that produce potent psychostimulant, euphoric, and reinforcing effects; and (2) atypical DRIs like vanoxerine (GBR-12909), modafinil, benztropine, and bupropion, which do not produce such effects or have greatly reduced such effects.[11]

Typical DRIs may actually be acting as dopamine releasing agent (DRA)-like agents that have been referred to as dopamine transporter (DAT) "inverse agonists" rather than as simple competitive reuptake inhibitors (which is what atypical DRIs are proposed to be).[11] Typical DRIs are similar to substrate-type DRAs in their effects on brain dopamine levels and in their subjective and behavioral effects.[11]

In terms of maximal brain dopamine elevations, typical DRIs or DAT "inverse agonists" can increase levels by 500 to 1,500%, substrate-type DRAs by more than 1,000% (as high as 5,000% or more), and atypical DRIs or competitive reuptake inhibitors by less than or equal to 500%.[11][12]

History

[edit]

Until the 1950s, dopamine was thought to only contribute to the biosynthesis of norepinephrine and epinephrine. It was not until dopamine was found in the brain in similar levels as norepinephrine that the possibility was considered that its biological role might be other than the synthesis of the catecholamines.[13]

List of DRIs

[edit]

Only DRIs which are selective for the DAT over the other monoamine transporters (MATs) are listed below. For a list of DRIs that act at multiple MATs, see other monoamine reuptake inhibitor pages such as NDRI and SNDRI.[disputeddiscuss]

Selective dopamine reuptake inhibitors

[edit]
Neurotransmitter transporter inhibitors
  Dopamine transporter inhibitors

DRIs with substantial activity at other sites

[edit]

Other DRIs

[edit]

See also

[edit]

References

[edit]
  1. ^ Song, R.; Zhang, H.-Y.; Li, X.; Bi, G.-H.; Gardner, E. L.; Xi, Z.-X. (2012). "Increased vulnerability to cocaine in mice lacking dopamine D3 receptors". Proceedings of the National Academy of Sciences. 109 (43): 17675–17680. Bibcode:2012PNAS..10917675S. doi:10.1073/pnas.1205297109. ISSN 0027-8424. PMC 3491487. PMID 23045656.
  2. ^ Singh Satendra (2010). "ChemInform Abstract: Chemistry, Design, and Structure-Activity Relationship of Cocaine Antagonists" (PDF). ChemInform. 31 (20): no. doi:10.1002/chin.200020238.. Page 928 (4th of article) 1st paragraph. Lines 8—11. Mirror hotlink.
  3. ^ Bonnet JJ, Benmansour S, Costentin J, Parker EM, Cubeddu LX (1990). "Thermodynamic analyses of the binding of substrates and uptake inhibitors on the neuronal carrier of dopamine labeled with [3H]GBR 12783 or [3H]mazindol". J. Pharmacol. Exp. Ther. 253 (3): 1206–14. PMID 2141637.
  4. ^ Cameron K, Kolanos R, Vekariya R, De Felice L, Glennon RA (2013). "Mephedrone and methylenedioxypyrovalerone (MDPV), major constituents of "bath salts," produce opposite effects at the human dopamine transporter". Psychopharmacology. 227 (3): 493–9. doi:10.1007/s00213-013-2967-2. PMC 3881434. PMID 23371489.
  5. ^ Lacey MG, Mercuri NB, North RA (April 1990). "Actions of cocaine on rat dopaminergic neurones in vitro". Br. J. Pharmacol. 99 (4): 731–5. doi:10.1111/j.1476-5381.1990.tb12998.x. PMC 1917549. PMID 2361170.
  6. ^ Kesselheim AS, Myers JA, Solomon DH, Winkelmayer WC, Levin R, Avorn J (2012). "The prevalence and cost of unapproved uses of top-selling orphan drugs". PLOS ONE. 7 (2): e31894. Bibcode:2012PLoSO...731894K. doi:10.1371/journal.pone.0031894. PMC 3283698. PMID 22363762.
  7. ^ Loland, C.J.; M. Mereu; O.M. Okunola; J. Cao; T.E. Prisinzano; T. Kopajtic; L. Shi; J.L. Katz; G. Tanda; A.H. Newman (1 September 2012). "R-modafinil (armodafinil): a unique dopamine uptake inhibitor and potential medication for psychostimulant abuse". Biol. Psychiatry. 72 (5): 405–13. doi:10.1016/j.biopsych.2012.03.022. PMC 3413742. PMID 22537794.
  8. ^ Wise RA (1996). "Neurobiology of addiction". Curr. Opin. Neurobiol. 6 (2): 243–51. doi:10.1016/S0959-4388(96)80079-1. PMID 8725967. S2CID 25378856.
  9. ^ Carroll FI, Howard JL, Howell LL, Fox BS, Kuhar MJ (2006). "Development of the dopamine transporter selective RTI-336 as a pharmacotherapy for cocaine abuse". AAPS J. 8 (1): E196–203. doi:10.1208/aapsj080124. PMC 2751440. PMID 16584128.
  10. ^ Kintscher, U (2012). "Reuptake Inhibitors of Dopamine, Noradrenaline, and Serotonin". Appetite Control. Handbook of Experimental Pharmacology. Vol. 209. pp. 339–347. doi:10.1007/978-3-642-24716-3_15. ISBN 978-3-642-24715-6. PMID 22249822.
  11. ^ a b c d Heal DJ, Gosden J, Smith SL (December 2014). "Dopamine reuptake transporter (DAT) "inverse agonism"--a novel hypothesis to explain the enigmatic pharmacology of cocaine". Neuropharmacology. 87: 19–40. doi:10.1016/j.neuropharm.2014.06.012. PMID 24953830.
  12. ^ Heal DJ, Smith SL, Gosden J, Nutt DJ (June 2013). "Amphetamine, past and present--a pharmacological and clinical perspective". J Psychopharmacol. 27 (6): 479–496. doi:10.1177/0269881113482532. PMC 3666194. PMID 23539642.
  13. ^ Jack R. Cooper; Floyd E. Bloom; Robert H. Roth (1996). "9". The Biochemical Basis of Neuropharmacology (7th ed.). Oxford University Press, Inc. p. 293.
  14. ^ Markowitz, JS; Patrick, KS (June 2008). "Differential pharmacokinetics and pharmacodynamics of methylphenidate enantiomers: does chirality matter?". Journal of Clinical Psychopharmacology. 28 (3 Suppl 2): S54-61. doi:10.1097/JCP.0b013e3181733560. PMID 18480678. Retrieved 28 May 2024.
  15. ^ Markowitz, John S.; Zhu, Hao-Jie; Patrick, Kennerly S. (18 December 2013). "Isopropylphenidate: An Ester Homolog of Methylphenidate with Sustained and Selective Dopaminergic Activity and Reduced Drug Interaction Liability". Journal of Child and Adolescent Psychopharmacology. 23 (10): 648–654. doi:10.1089/cap.2013.0074. hdl:2027.42/140321. ISSN 1044-5463. PMID 24261661.
  16. ^ Zhao G, Jiang ZH, Zheng XW, Zang SY, Guo LH (September 2008). "Dopamine transporter inhibitory and antiparkinsonian effect of common flowering quince extract". Pharmacology Biochemistry and Behavior. 90 (3): 363–71. doi:10.1016/j.pbb.2008.03.014. PMID 18485464. S2CID 40114711.
  17. ^ Yoon, Seo Young; dela Peña, Ike; Kim, Sung Mok; Woo, Tae Sun; Shin, Chan Young; Son, Kun Ho; Park, Haeil; Lee, Yong Soo; Ryu, Jong Hoon; Jin, Mingli; Kim, Kyeong-Man; Cheong, Jae Hoon (2013). "Oroxylin A improves attention deficit hyperactivity disorder-like behaviors in the spontaneously hypertensive rat and inhibits reuptake of dopamine in vitro". Archives of Pharmacal Research. 36 (1): 134–140. doi:10.1007/s12272-013-0009-6. ISSN 0253-6269. PMID 23371806. S2CID 23927252.